Jump to content

Reducing Risks Through Independent M&S 


NASA

Recommended Posts

  • Publishers

This article is from the 2023 Technical Update.

The NESC Flight Mechanics Technical Discipline Team (TDT) provides support to all NASA Mission Directorates and throughout all mission phases. Highlights from this past year include three critical program support assessments, new discipline-advancing capabilities in simulation tools, and a preview of future efforts by the TDT to capture knowledge and expertise to pass on to the next generation. 

Independent modeling and simulation (M&S) enables new insights into critical subsystem designs and offers opportunities for analyses to reduce risk acceptance for programs. Several ongoing assessments have contributed to improved flight certification processes and risk reduction. The Flight Mechanics TDT sponsored improvements to simulation tools that enabled new solutions to complex problems, and recent NESC Academy recordings captured the latest advancements in the discipline. 

techup2023-pg48-art1-1.png?w=795
Notional risk scoring reduction through independent M&S

techup2023-pg48-art2.png?w=1082
Modeling of crew seat acceleration during entry, decent and landing.

The TDT supported the Commercial Crew Program by independently modeling and simulating commercial providers’ trajectory designs and on-board deorbit, entry, descent, and landing software. This past year, the team assessed the return of additional crew on commercial capsules for contingency scenarios and used independent simulation analyses to confirm this capability poses no significant changes in splashdown conditions, thus ensuring additional options for returning crew safely if the primary return vehicle is disabled. Additionally, the NESC is providing key assessments for manual control using a “paper pilot” based on actual pilot responses. This study enabled manual control as a viable survival scenario if the flight computer fails during deorbit, entry, descent, and landing phases of flight. These efforts contributed to an independent verification and validation of commercial providers’ designs that supported certification of commercial flights to and from the ISS. 

Standing up a new independent M&S effort in support of the Mars Ascent Vehicle, a critical element delivering Martian soil and atmosphere samples for eventual return to Earth, provides value and increases confidence in the design of this key element for the Mars Sample Return Campaign. The Flight Mechanics team is contributing unique methodologies for studying the challenging dynamics of this two-stage solid motor design where the second stage is unguided and spin-stabilized. 

techup2023-pg48-art3.png?w=1780
Frame of Mars ascent vehicle second stage separation dynamics from an M&S animation

Independent M&S of key staging and separation events for the SLS has resulted in affirmation of the SLS trajectory and guidance, navigation and control design. Flight Mechanics TDT members contributed analyses to evaluate the heliocentric disposal of the Interim Cyrogenic Propulsion Stage (ICPS). 

techup2023-pg48-art4.png?w=1829
Monte Carlo modeling of the Artemis 1

This past year, the TDT also completed an assessment that explored the interoperability between common mission analysis tools and enabled trajectory sharing between tools to solve more complex mission design problems (page 31). An NESC Technical Bulletin (page 47) and Innovative Technique (page 65) have been published on this topic. 

NESC Academy recordings on trajectory optimization tools and frameworks, electric aircraft sizing methodologies, system optimization, and aerodynamic decelerator systems were important knowledge capture and transfer initiatives. These recordings are available to help train and educate engineers on the tools and processes NESC teams will use for future independent M&S efforts. 

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      A 1.2% scale model of the Super Heavy rocket that will launch the Starship human landing system to the Moon for future crewed Artemis missions was recently tested at NASA’s Ames Research Center’s transonic wind tunnel, providing valuable information on vehicle stability when re-entering Earth’s atmosphere.NASA Four grid fins on the Super Heavy rocket help stabilize and control the rocket as it re-enters Earth’s atmosphere after launching Starship to a lunar trajectory. Engineers tested the effects of various aerodynamic conditions on several grid fin configurations during wind tunnel testing. NASA Wind tunnel testing at NASA’s Ames Research Center helped engineers better understand the aerodynamic forces the SpaceX Super Heavy rocket, with its 33 Raptor engines, experiences during various stages of flight. As a result of the testing, engineers updated flight control algorithms and modified the exterior design of the rocket. NASA NASA and its industry partners continue to make progress toward Artemis III and beyond, the first crewed lunar landing missions under the agency’s Artemis campaign. SpaceX, the commercial Human Landing System (HLS) provider for Artemis III and Artemis IV, recently tested a 1.2% scale model of the Super Heavy rocket, or booster, in the transonic Unitary Plan Wind Tunnel at NASA’s Ames Research Center in California’s Silicon Valley. The Super Heavy rocket will launch the Starship human landing system to the Moon as part of Artemis.
      During the tests, the wind tunnel forced an air stream at the Super Heavy scale model at high speeds, mimicking the air resistance and flow the booster experiences during flight. The wind tunnel subjected the Super Heavy model, affixed with pressure-measuring sensors, to wind speeds ranging from Mach .7, or about 537 miles per hour, to Mach 1.4, or about 1,074 miles per hour. Mach 1 is the speed that sound waves travel, or 761 miles per hour, at sea level.
      Engineers then measured how Super Heavy model responded to the simulated flight conditions, observing its stability, aerodynamic performance, and more. Engineers used the data to update flight software for flight 3 of Super Heavy and Starship and to refine the exterior design of future versions of the booster. The testing lasted about two weeks and took place earlier in 2024.
      After Super Heavy completes its ascent and separation from Starship HLS on its journey to the Moon, SpaceX plans to have the booster return to the launch site for catch and reuse. The Starship HLS will continue on a trajectory to the Moon.
      To get to the Moon for the Artemis missions, astronauts will launch in NASA’s Orion spacecraft aboard the SLS (Space Launch System) rocket from the agency’s Kennedy Space Center in Florida. Once in lunar orbit, Orion will dock with the Starship HLS or with Gateway. Once the spacecraft are docked, the astronauts will move from Orion or Gateway to the HLS Starship, which will bring them to the surface of the Moon. After surface activities are complete, Starship will return the astronauts to Orion or Gateway waiting in lunar orbit. The astronauts will transfer to Orion for the return trip to Earth. 
      With Artemis, NASA will explore more of the Moon than ever before, learn how to live and work away from home, and prepare for future human exploration of the Red Planet. NASA’s SLS, exploration ground systems, and Orion spacecraft, along with the human landing system, next-generation spacesuits, Gateway lunar space station, and future rovers are NASA’s foundation for deep space exploration.
      For more information about Artemis, visit:
      https://www.nasa.gov/artemis
      News Media Contact
      Corinne Beckinger 
      Marshall Space Flight Center, Huntsville, Ala. 
      256.544.0034  
      corinne.m.beckinger@nasa.gov 
      View the full article
    • By NASA
      Mars: Perseverance (Mars 2020) Perseverance Home Mission Overview Rover Components Mars Rock Samples Where is Perseverance? Ingenuity Mars Helicopter Mission Updates Science Overview Objectives Instruments Highlights Exploration Goals News and Features Multimedia Perseverance Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 2 min read
      Persevering Through the Storm
      A region-wide seasonal dust storm obscures the Jezero Crater in this image from NASA’s Mars Perseverance rover, acquired using its Left Mastcam-Z camera. Mastcam-Z is a pair of cameras located high on the rover’s mast. Perseverance captured the image on Aug. 20, 2024 (Sol 1244, or Martian day 1,244 of the Mars 2020 mission) at the local mean solar time of 16:05:34. This image is part of a Mastcam-Z mosaic of the “northern fan,” a part of Jezero Crater that Perseverance never drove through, but is an area that’s thought to have been deposited in a similar way to the delta that the rover did explore. NASA/JPL-Caltech/ASU It is dust-storm season on Mars! Over the past couple of weeks, as we have been ascending the Jezero Crater rim, our science team has been monitoring rising amounts of dust in the atmosphere. This is expected: Dust activity is typically highest around this time of the Martian year (early Spring in the northern hemisphere). The increased dust has made our views back toward the crater hazier than usual, and provided our atmospheric scientists with a great opportunity to study the way that dust storms form, develop, and spread around the planet.
      Perseverance has a suite of scientific instruments well-suited to study the Martian atmosphere. The Mars Environmental Dynamics Analyzer (MEDA) provides regular weather reports, the cadence of which has increased during the storm to maximize our science. We also routinely point our Mastcam-Z imager toward the sky to assess the optical density (“tau”) of the atmosphere.
      There are not any signs that this regional dust storm will become planetwide — like the global dust storm in 2018 — but every day we are assessing new atmospheric data. Hopefully the skies will further clear up as we continue to climb in the coming weeks, because we are expecting stunning views of the crater floor and Jezero delta. This will offer the Perseverance team a unique chance to reflect on the tens of kilometers we have driven and years we have spent exploring Mars together.
      Written by Henry Manelski, Ph.D. student at Purdue University
      Share








      Details
      Last Updated Sep 05, 2024 Related Terms
      Blogs Explore More
      2 min read Sols 4295-4296: A Martian Moon and Planet Earth


      Article


      7 hours ago
      2 min read Sol 4294: Return to McDonald Pass


      Article


      21 hours ago
      3 min read Sols 4291-4293: Fairview Dome, the Sequel


      Article


      22 hours ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Texas High School Aerospace Scholars get a virtual view of an extravehicular activity (EVA) suit in testing at NASA’s Johnson Space Center in Houston. Photo credit: NASA/Helen Arase Vargas Explore the universe this fall without leaving your classroom through live virtual engagements with NASA space and aviation experts. NASA is offering a new lineup of stellar virtual experiences to spark STEM excitement and connect students with the agency’s missions, science, careers, and more.
      The virtual engagements, managed by NASA’s Next Gen STEM project, are free to join and open to both formal and informal education groups. These options are sure to launch your students’ love of STEM:
      NASA Back-to-School Career Day (Grades K-12)
      On Sept. 26, NASA is hosting a Back-to-School Career Day showcasing a variety of NASA careers with virtual tours of agency facilities, live Q&A with experts, and more.
      Open to K-12 formal and informal education organizations, the registration deadline is Thursday, Sept. 5. In addition to the live event, the interactive platform will be available from Monday, Sept. 23, through Friday, Sept. 27.
      Europa Clipper Launch Virtual Watch Party (All Grade Levels)
      NASA’s Europa Clipper spacecraft is scheduled to launch no earlier than Oct. 10 on a mission to investigate whether Jupiter’s icy moon, Europa, could contain the building blocks needed to support life. The launch window opens on Oct. 10 during the school day at 12:32 p.m. EDT, and your classroom can be part of this pioneering mission. Sign up to watch the launch online, visit Europa Clipper’s Participation Hub for more opportunities, and find additional resources on Europa Clipper’s Kids Resources Hub.
      NQuest Virtual Workshops (Grades 6-8)
      NQuest offers 45-minute virtual workshops every Monday and Thursday. Available on a first-come, first-served basis, these free workshops include a live presentation, captivating NASA videos, and a hands-on activity to bring STEM concepts to life. All you need is a laptop, projector, and basic classroom supplies. Workshops can be scheduled to fit your school’s bell schedule between 11:30 a.m. and 6:30 p.m. EDT. Register your class by Oct. 11.
      “Astro-Not-Yets” Virtual Classroom Connections (Grades K-4)
      Introduce your students to the Astro-Not-Yets, a series of short stories that teach students about NASA’s Commercial Crew Program. In each of these monthly virtual events, a NASA expert whose job relates to the story will read the book to students, then answer their questions.
      Wednesday, Oct. 23: The Astro-Not-Yets! Explore Sound. Students will learn how sound travels and experiment with transmitting sound through a string-cup phone. Registration deadline: Wednesday, Oct. 9. Wednesday, Nov. 20: Astro-Not-Yets! Explore Energy. Students will learn how spacecraft safely bring astronauts home from space, then design and test their own system to safely land an egg on the ground. Registration deadline: Wednesday, Nov. 6. Wednesday, Dec. 11: Astro-Not-Yets! Explore Microgravity. Students will learn all about gravity, microgravity, and the International Space Station. Registration deadline: Wednesday, Nov. 27. “First Women” Virtual Classroom Connections (Grades 5-12)
      This series introduces some of the women at NASA who have made significant achievements in STEM. Students get to hear their stories first-hand and ask them questions in a live Q&A.
      Wednesday, Oct. 16: Meet NASA’s first female launch director, Charlie Blackwell-Thompson. She led the launch team during the uncrewed Artemis I mission around the Moon in 2022. Now, she and her team are preparing for the first crewed Artemis mission, Artemis II. Registration deadline: Monday, Sept. 30. Wednesday, Nov. 6: Meet Laurie A. Grindle and learn about NASA’s first X-43A Guinness world record. Today, Grindle is deputy center director at NASA’s Armstrong Flight Research Center in Edwards, California, but in 2004, the X-43A aircraft she and her team developed set the Guinness World Record for “the fastest air-breathing aircraft” twice in one year. Registration deadline: Monday, Oct. 21. Wednesday, Dec. 4: Meet Dr. Ruth Jones, NASA’s 2024 Wings of Excellence Awardee. Jones will share her experience as a woman in STEM and tell students what it was like to become the first woman to earn a bachelor’s degree in physics from the University of Arkansas at Pine Bluff. Registration deadline: Monday, Nov. 18. Surprisingly STEM Career Explorations Virtual Events (Grades 5-12)
      The Surprisingly STEM video series highlights some of NASA’s many unexpected careers. In these events, experts from the videos discuss their unusual and exciting jobs and share their journeys that led them to NASA.
      Thursday, Oct. 24: Soft robotics engineer Jim Neilan explains the importance of soft robotics in human spaceflight and some of the role’s critical skills. Registration deadline: Friday, Oct. 18. Thursday, Nov. 14: Exploration geologist Angela Garcia takes students behind the scenes of her job training NASA astronauts to explore for the “crater” good of humanity. Registration deadline: Thursday, Nov. 7. Thursday, Dec. 12: Memory metal engineer Othmane Benafan explains how he “trains” metal to bend, stretch, and twist when prompted, and how this technology benefits NASA missions. Registration deadline: Thursday, Dec. 5. Bring NASA Experts Into the Classroom (All Grades)
      NASA recently launched NASA Engages, a new, database-driven platform designed to connect a wide range of audiences with experts from across the space agency – both virtually and in person. Available to classrooms from preschool to college, informal education organizations such as libraries and science centers, and other eligible groups, NASA Engages enables educators and group leaders to find inspirational guest speakers, knowledgeable science fair judges, and more.
      There’s More to Explore
      Find student challenges, hands-on activities, and more opportunities on the Learning Resources website managed by NASA’s Office of STEM Engagement. Visit How Do I Navigate NASA Learning Resources and Opportunities? to explore additional platforms and offerings to enhance your STEM curriculum. Subscribe to the weekly NASA EXPRESS e-newsletter to discover the latest events, resources, and other opportunities to bring NASA into your classroom. Explore More
      7 min read NASA Project in Puerto Rico Trains Students in Marine Biology
      Article 20 hours ago 3 min read Eclipse Soundscapes AudioMoth Donations Will Study Nature at Night
      During the April 8, 2024 total solar eclipse, approximately 770 AudioMoth recording devices were used…
      Article 22 hours ago 10 min read 40 Years Ago: President Reagan Announces Teacher in Space Project
      Article 2 days ago View the full article
    • By USH
      Time slips; a curious phenomena where individuals unexpectedly find themselves transported across time, be it minutes, days, or even years, without any intention or control over the experience. Those who experience time slips often report feeling as though they’ve been transported to a different point in time. 

      Imagine walking down a familiar street when suddenly everything changes. The asphalt beneath your feet transforms into cobblestone, cars vanish, replaced by horse-drawn carriages. The air fills with the scent of coal smoke and horse manure. 
      People in Victorian-era clothing hurry past, glancing at you suspiciously. Panic sets in as you realize you're no longer in your own time. Then, just as quickly, you're back in the present day. 
      You’ve just experienced a time slip, and you’re not alone. 
      Thousands of people worldwide have reported similar experiences, brief moments of traveling through time, witnessing scenes from the past or future, only to return to the present moment. 
      But what exactly are these experiences? Are they vivid hallucinations, or could time slips be real, offering us glimpses into the true nature of time and reality? 
      Some theories suggest that if a portal existed between our universe and a parallel one, time slips could theoretically occur. However, it’s crucial to note that there is no concrete evidence to support the idea that we live in a multiverse. 
      In the video below, we’ll explore a few famous time slip stories and the scientific theories that might help explain these mysterious events.
        View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA Life Support Technician Mathew Sechler provides support as the X-59’s ejection seat is installed into the aircraft at Lockheed Martin Skunk Works’ facilities in Palmdale, California. Completion of the seat’s installation marks an integration milestone for the aircraft as it prepares for final ground tests.Lockheed Martin The team preparing NASA’s X-59 continues through testing in preparation for the quiet supersonic aircraft to make its first flight. This includes a trio of important structural tests and critical inspections on the path to flight.
      The X-59 is an experimental plane that will fly faster than the speed of sound without a loud sonic boom. It will be the first of its kind to fly, with the goal of gathering sound data for NASA’s Quesst mission, which could open the door to commercial supersonic overland flight in the future.
      Because of its unique design, the X-59’s engineering team must do all it can to predict every aspect of it before it ever takes off, including how its fuselage, wings, and the control surfaces will behave together in flight. That means testing on the ground to give the team the data it needs to validate the models they’ve developed.
      “The testing not only tells us how structurally sound the aircraft is, but also what kind of forces it can take once it is in the air.
      WALT SILVA
      Senior Research Scientist at NASA Langley Research Center in Hampton, Virginia, who serves as structures lead for the X-59.
      The X-59’s structural tests provide the team with valuable feedback. From 2022 to –2024 the engineers collected data on the forces that the aircraft will experience in flight and the potential effects of vibrations on the plane.
      “You do these tests, you get the data, and things compare well in some areas and in other areas you want to improve them,” Silva said. “So, you figure that all out and then you work towards making it better.”
      Lockheed Martin technicians temporarily remove the canopy from the X-59 in preparation for final installation of the ejection seat into the aircraft. Lockheed Martin Earlier this year, the X-59 underwent structural coupling tests that saw its control surfaces, including its ailerons, flaps and rudder, moved by computer. It was the last of three vital structural tests. In 2023, engineers applied “shakers” to parts of the plane to evaluate its response to vibrations, and in early 2022 they conducted a proof test to ensure the aircraft would absorb the forces it will experience during flight. This year the X-59 ejection seat was installed and passed inspection. The ejection seat is an additional safety measure that is critical for pilot safety during all aspects of flight.
      With structural tests and ejection seat installation complete, the aircraft will advance toward a new milestone, starting up its engines for a series of test runs on the ground.
      Also ahead for the X-59 is testing the airplane’s avionics and extensive wiring for potential electromagnetic interference, imitating flight conditions in a ground test environment, and finally, completing taxi tests to validate ground mobility before first flight.
      “First flights are always very intense,” said Natalie Spivey, aerospace engineer at NASA’s Armstrong Flight Research Center in Edwards, California. “There’s lots of anticipation, but we’re ready to get there and see how the aircraft responds in the air. It’ll be very exciting.”
      Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More
      2 min read Automated Technology Developed at Glenn Launches to Space 
      Article 35 mins ago 1 min read Cleveland High School Students Land STEM Career Exploration Experience 
      Article 35 mins ago 1 min read NASA Lands at National Cherry Festival 
      Article 35 mins ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans In Space
      Supersonic Flight
      Explore NASA’s History
      Share
      Details
      Last Updated Aug 13, 2024 EditorLillian GipsonContactKristen Hatfieldkristen.m.hatfield@nasa.gov Related Terms
      Aeronautics Aeronautics Research Mission Directorate Ames Research Center Armstrong Flight Research Center Glenn Research Center Langley Research Center Low Boom Flight Demonstrator Quesst (X-59) Quesst: The Vehicle Supersonic Flight View the full article
  • Check out these Videos

×
×
  • Create New...